Security Experts:

Connect with us

Hi, what are you looking for?

SecurityWeekSecurityWeek

Incident Response

Security Operations: What is Your Signal-to-Noise Ratio?

More Signal, Less Noise! With a Large Volume of Even the Highest Priority Security Alerts, Analysts Cannot Successfully Review Each Alert

More Signal, Less Noise! With a Large Volume of Even the Highest Priority Security Alerts, Analysts Cannot Successfully Review Each Alert

When I chat with security leaders and practitioners, they often ask me for recommendations on how they can improve their security posture. I generally make several recommendations, which depend heavily on the specific organization and its maturity. One recommendation I almost always make is for the organization to take its security operations workflow to the next level by improving its efficiency. This is a topic I am passionate about, and it is one that I would like to discuss with a wider audience in this piece. Human analyst and incident responder resources are always in short supply, and an efficient security operations workflow is the single biggest force multiplier I have found to date for those resources.

There are many ways that an organization could look to improve the efficiency of its security operations workflow, but there is one way in particular that presents itself most prominently to me.  Most organizations have a variety of log data streaming into a centralized log collection and aggregation system (be it a SIEM, data warehouse, or otherwise).  Most organizations use that data to drive their alerting. Often, the alerts that are produced populate a ticketing or incident management system, and it is often from there that the events that make up the work queue are drawn.

Singal to Noise Ratio Whatever the specific technologies and processes involved in this workflow, there is one particular point that jumps out at me emphatically.  Our efficiency as an organization correlates most strongly with the quality of our alerts.  In other words, our work queue defines what our scarce human resources work on in a given day. Given that, doesn’t it make sense to supply that work queue with the highest quality, highest fidelity alerts possible to ensure that human resources spend their precious cycles on the highest value work?  In other words, more signal, less noise.

At the same time, recent media reports discussing various high profile breaches have indicated that, often, numerous alerts fired as a result of the intrusion activity. In many cases, the alerts were not properly handled, causing the breaches to remain undetected for months. I’m sure there are many angles in which these media reports can be dissected. Rather than play the blame game, I would like to discuss a subject that remains a challenge for our profession as a whole and that I eluded to above: the signal-to-noise ratio.

Wikipedia defines the signal-to-noise ratio as “a measure used in science and engineering that compares the level of a desired signal to the level of background noise.”  In other words, the more you have of what you want, and the less you have of what you don’t want, the easier it is to measure something.  

Let’s illustrate this concept by imagining a conversation between two people in a noisy cafe. If I record that conversation from the next table, upon playback, it will be very difficult for me to truly understand what was discussed. Conversely, if I record that conversation in a quiet room, it will be much easier to understand what was discussed upon playback. The signal-to-noise ratio in the second scenario is much higher than in the first scenario.

The same concept applies to security operations and incident response. In security operations, true positives are the signal, and false positives are the noise. Consider the case of two different Security Operations Centers (SOCs), SOC A and SOC B.  In SOC A, the daily work queue contains approximately 100 reliable, high fidelity, actionable alerts. In SOC A, an analyst is able to review each alert. If incident response is necessary for a given alert, it is performed. In SOC B, the daily work queue contains approximately 100,000 alerts, almost all of which are false positives. Analysts attempt to review the alerts of the highest priority.

Because of the large volume of even the highest priority alerts, analysts are not able to successfully review all of the highest priority alerts.  Additionally, because of the large number of false positives, SOC B’s analysts become desensitized to alerts and do not take them particularly seriously.

One day, 10 additional alerts relating to payment card stealing malware fire within a few minutes of each other.

In SOC A, where every alert is reviewed by an analyst, where the signal-to-noise ratio is high, and where 10 additional alerts seems like a lot, analysts successfully identify the breach less than 24 hours after it occurs.  SOC A’s team is able to perform analysis, containment, and remediation within the first 24 hours of the breach.  The team is able to stop the bleeding before any payment card data is exfiltrated.  Although there has been some damage, it can be controlled. The organization can assess the damage, respond appropriately, and return to normal business operations.

In SOC B, where an extremely small percentage of the alerts are reviewed by an analyst, where the signal-to-noise ratio is low, and where 10 additional alerts doesn’t even raise an eyebrow, the breach remains undetected.  Months later, SOC B will learn of the breach from a third party.  The damage will be extensive, and it will take the organization months or years to fully recover.

Unfortunately, in my experience, there are many more SOC B’s out there than there are SOC A’s. It is relatively straightforward to turn a SOC B into a SOC A, but it does require experienced professionals, organizational will, and focus.  How do I know? I’ve turned SOC B’s into SOC A’s several times during my career.

We are fortunate to have some great technology choices these days that we can leverage to improve our security operations and incident response functions. These technology choices can enable us to learn of and respond to breaches soon after they occur.

Before purchasing any technology intended to produce alerts destined for the work queue, we should ensure that it allows us to hone in on the activity we want to identify (the true positives/the signal), while minimizing the activity we do not want to identify (the false positives/the noise).  As always, these technologies are tools that need to be properly leveraged as part of the larger people, process, and technology picture.

What is your signal-to-noise ratio? Is it high enough to detect the next breach, or could it stand to be strengthened? I would posit that the ratio of true positives to false positives (the signal-to-noise ratio) is an important metric that all organizations should review. Not doing so could have dire consequences.

Written By

Joshua Goldfarb (Twitter: @ananalytical) is currently a Fraud Solutions Architect - EMEA and APCJ at F5. Previously, Josh served as VP, CTO - Emerging Technologies at FireEye and as Chief Security Officer for nPulse Technologies until its acquisition by FireEye. Prior to joining nPulse, Josh worked as an independent consultant, applying his analytical methodology to help enterprises build and enhance their network traffic analysis, security operations, and incident response capabilities to improve their information security postures. He has consulted and advised numerous clients in both the public and private sectors at strategic and tactical levels. Earlier in his career, Josh served as the Chief of Analysis for the United States Computer Emergency Readiness Team (US-CERT) where he built from the ground up and subsequently ran the network, endpoint, and malware analysis/forensics capabilities for US-CERT.

Click to comment

Daily Briefing Newsletter

Subscribe to the SecurityWeek Email Briefing to stay informed on the latest threats, trends, and technology, along with insightful columns from industry experts.

Join this webinar to learn best practices that organizations can use to improve both their resilience to new threats and their response times to incidents.

Register

Join this live webinar as we explore the potential security threats that can arise when third parties are granted access to a sensitive data or systems.

Register

Expert Insights

Related Content

Data Breaches

LastPass DevOp engineer's home computer hacked and implanted with keylogging malware as part of a sustained cyberattack that exfiltrated corporate data from the cloud...

Application Security

GitHub this week announced the revocation of three certificates used for the GitHub Desktop and Atom applications.

Cybercrime

A recently disclosed vBulletin vulnerability, which had a zero-day status for roughly two days last week, was exploited in a hacker attack targeting the...

Identity & Access

Zero trust is not a replacement for identity and access management (IAM), but is the extension of IAM principles from people to everyone and...

Data Breaches

GoTo said an unidentified threat actor stole encrypted backups and an encryption key for a portion of that data during a 2022 breach.

Network Security

NSA publishes guidance to help system administrators identify and mitigate cyber risks associated with transitioning to IPv6.

Cyberwarfare

Websites of German airports, administration bodies and banks were hit by DDoS attacks attributed to Russian hacker group Killnet

Identity & Access

Hackers rarely hack in anymore. They log in using stolen, weak, default, or otherwise compromised credentials. That’s why it’s so critical to break the...